Rapid Direct Action of Estradiol in GnRH Neurons: Findings and Implications
نویسندگان
چکیده
Estradiol plays a pivotal role in the control of gonadotropin-releasing hormone (GnRH) neuronal function and female reproduction. While positive and negative feedback actions of estradiol that enhance and suppress release of GnRH and LH are primarily mediated through estrogen receptor alpha located in interneurons, a series of recent studies in our laboratory indicate that rapid excitatory actions of estradiol also directly modify GnRH neuronal activity. We observed this phenomenon in cultured primate GnRH neurons, but similar rapid direct actions of estradiol are also described in cultured GnRH neurons and green fluorescent protein-labeled GnRH neurons of mice. Importantly, rapid direct action of estradiol in GnRH neurons is mediated through membrane or membrane associated receptors, such as GPR30, STX-sensitive receptors, and ERβ. In this review, possible implications of this rapid estradiol action in GnRH neurons are discussed.
منابع مشابه
Intermediary role of kisspeptin in the stimulation of gonadotropin-releasing hormone neurons by estrogen in the preoptic area of sheep brain
Introduction: The role of estrogen in the stimulation of gonadotropin-releasing hormone (GnRH) neurons is clear. These neurons do not express estrogen alpha receptors, so other mediator neurons should be present to transmit the positive feedback effect of estrogen to the GnRH neurons. Kisspeptin neurons have an important role in the stimulation of GnRH neurons, so they can be the mediator of...
متن کاملVoltage-gated potassium currents are targets of diurnal changes in estradiol feedback regulation and kisspeptin action on gonadotropin-releasing hormone neurons in mice.
Estradiol has both negative and positive feedback actions upon gonadotropin-releasing hormone (GnRH) release; the latter actions trigger the preovulatory GnRH surge. Although neurobiological mechanisms of the transitions between feedback modes are becoming better understood, the roles of voltage-gated potassium currents, major contributors to neuronal excitability, are unknown. Estradiol alters...
متن کاملDifferential regulation of gonadotropin-releasing hormone neuron activity and membrane properties by acutely applied estradiol: dependence on dose and estrogen receptor subtype.
Gonadotropin-releasing hormone (GnRH) neurons are critical to controlling fertility. In vivo, estradiol can inhibit or stimulate GnRH release depending on concentration and physiological state. We examined rapid, nongenomic effects of estradiol. Whole-cell recordings were made of GnRH neurons in brain slices from ovariectomized mice with ionotropic GABA and glutamate receptors blocked. Estradio...
متن کاملGhrelin Decreases Firing Activity of Gonadotropin-Releasing Hormone (GnRH) Neurons in an Estrous Cycle and Endocannabinoid Signaling Dependent Manner
The orexigenic peptide, ghrelin is known to influence function of GnRH neurons, however, the direct effects of the hormone upon these neurons have not been explored, yet. The present study was undertaken to reveal expression of growth hormone secretagogue receptor (GHS-R) in GnRH neurons and elucidate the mechanisms of ghrelin actions upon them. Ca(2+)-imaging revealed a ghrelin-triggered incre...
متن کاملDifferential Roles of GnRH-I and GnRH-II Neurons in the Control of the Primate Reproductive Axis
In vertebrates, gonadotropin-releasing hormone (GnRH) represents the primary neuroendocrine link between the brain and the reproductive axis, and in some species up to three different forms of GnRH have been detected. Until recently, it had been assumed that humans and non-human primates only express one form (GnRH-I), but it is now clear they also express a second form (GnRH-II). GnRH-II, like...
متن کامل